AIFaultGen - AI-Powered Electrical Fault Open Data Generator

Physics-Informed Generative AI for Electrical Fault Analysis & Open Data Generation
Based on empirical research by the OpenFaultDynamics Team - Meru University of Science and Technology, Kenya

Physics Principle: Short circuit fault quantities are fundamentally dependent on initial system power conditions. Higher input voltages lead to higher short circuit currents and lower short circuit voltages due to increased energy dissipation in the fault arc. This system-dependent behavior is accurately modeled by our physics-informed AI.

Physics-Informed AI System Status

AI Model
ONLINE
Trained on 283 samples
Accuracy
65.0%
Fair
Users Served
1,247
This month

AI Fault Data Generator

Configuration Parameters

Input voltage for simulation - higher voltages produce more severe fault conditions
Number of synthetic data points to generate

Physics-Informed AI Architecture

System-Dependent Physics Model
  • Core Physics Principle System-Dependent Fault Dynamics
  • Voltage-Current Relationship Nonlinear Power Law: I ∝ V^1.3
  • Energy Dissipation P_loss = I²R ∝ V^2.6
  • Arc Resistance Dynamics R_arc ∝ 1/V^0.7
  • Temporal Evolution Coupled Differential Equations
I_sc = k₁·V_initial^γ · e^(-k₂·t·V_initial^β) + k₃·V_initial^δ
V_sc = V_initial · (1 - α·V_initial^ε) · e^(-λ·t·V_initial^ζ)
Key Physics Insight:

Our model demonstrates that fault quantities are fundamentally dependent on initial system conditions. Higher input voltages create more severe fault conditions with disproportionately higher short circuit currents and lower fault voltages due to increased energy dissipation in the arc plasma.

Live Sensor Status & Phase Detection

Current Electrical Measurements

Voltage
0.000000 V
Updated: 10:36:39
Current
0.000000 A
Updated: 10:36:39
Resistance
0.000000 Ω
Updated: 10:36:39
AIFaultGen Database Cluster: Operational

Active Databases: 6/6 | Total Samples: 283 | Current Experiment: 10.0V - After Short Circuit

Cluster Online

Research Statistics Overview

Active Experiments
6/6
2.5V, 5V, 10V × Before/After
Total Samples
283
Across all experiments
Latest Voltage
0.0000 V
Most recent measurement
Latest Current
0.0000 A
Most recent measurement

Latest Measurements Across All Experiments

Experiment Voltage (V) Current (A) Resistance (Ω) Samples Last Update Status
2.5V - Before Short Circuit0.0000000.0000000.00000046Nov 21, 17:53:02Idle
2.5V - After Short Circuit0.0000000.0000000.00000046Nov 21, 18:18:25Idle
5.0V - Before Short Circuit0.0000000.0000000.00000040Nov 21, 18:07:36Idle
5.0V - After Short Circuit0.0000000.0000000.00000055Nov 21, 18:31:47Idle
10.0V - Before Short Circuit0.0000000.0000000.00000070Nov 21, 18:12:18Idle
10.0V - After Short Circuit0.0000000.0000000.00000026Nov 21, 18:36:39Idle

Voltage Analysis

Monitoring voltage stability across different circuit conditions

0.0000 V
Latest Reading

Current Flow

Tracking current variations during fault conditions

0.0000 A
Latest Reading

Resistance

Calculating resistance changes using exponential decay model

0.0000 Ω
Latest Reading

Physics-Informed AI Fault Prediction Model

Model Performance

65.0%
Overall Accuracy
2.5V-200V
Voltage Range
283
Training Samples

System-Dependent Physics Model

Core Mathematical Foundation

Our AI combines advanced physics-based differential equations with statistical learning to model electrical fault behavior with system dependency:

  • Before Short: Temperature-dependent Ohm's Law R(T) = R₀[1 + α(T-T₀)], T = T₀ + k·I²
  • After Short: Nonlinear system-dependent arc model V(t) = V₀·(1-β·V₀^γ)·exp(-λ·t·V₀^δ) I(t) = k₁·V₀^ε·exp(-k₂·t·V₀^ζ) + k₃·V₀^η
  • Energy Balance: Power dissipation relationship P_diss = I²·R_arc = k·V₀^θ·exp(-μ·t)
Physics Principle: Fault quantities are fundamentally dependent on initial system power. Higher input voltages lead to higher short circuit currents and lower fault voltages due to increased energy dissipation in the fault arc plasma.

System Beneficiaries

Industrial

Power systems protection, fault analysis, equipment safety testing

Academic

Research, curriculum development, student projects, thesis work

Research

Scientific discovery, experimental validation, publication support

Engineering

Design validation, simulation testing, protection system development

For Actual Experimental Data & Collaboration

OpenFaultDynamics
Meru University of Science and Technology, Kenya
alexkimuya23@gmail.com

Detailed Experiment Data

2.5V - Before Short Circuit

2.5VBefore Short CircuitOffline
46 Records
IDVoltage (V)Current (A)Resistance (Ω)Sample TimeScaling (a)Decay (k)Timestamp
#460.0000000.0000000.00000058,781ms0.000000000.00000000Nov 21, 17:53:02
#450.0000000.0000000.00000055,405ms0.000000000.00000000Nov 21, 17:52:59
#440.0000000.0000000.00000051,728ms0.000000000.00000000Nov 21, 17:52:56
#430.0000000.0000000.00000049,239ms0.000000000.00000000Nov 21, 17:52:52
#420.0000000.0000000.00000046,182ms0.000000000.00000000Nov 21, 17:52:49
#410.0000000.0000000.00000043,744ms0.000000000.00000000Nov 21, 17:52:46
#400.0000000.0000000.00000040,027ms0.000000000.00000000Nov 21, 17:52:44
#390.0000000.0000000.00000037,867ms0.000000000.00000000Nov 21, 17:52:40

2.5V - After Short Circuit

2.5VAfter Short CircuitOffline
46 Records
IDVoltage (V)Current (A)Resistance (Ω)Sample TimeScaling (a)Decay (k)Timestamp
#460.0000000.0000000.00000055,491ms0.008244000.04073200Nov 21, 18:18:25
#450.0000000.0000000.00000052,073ms0.000000000.04073200Nov 21, 18:18:20
#440.0000000.0000000.00000049,614ms0.020186000.04073200Nov 21, 18:18:16
#430.0000000.0000000.00000041,633ms0.020125000.04446200Nov 21, 18:18:14
#420.0000000.0000000.00000037,327ms0.000637000.10225300Nov 21, 18:18:06
#410.0000000.0000000.00000034,869ms0.017577000.10225300Nov 21, 18:18:02
#400.0000000.0000000.00000032,107ms0.004520000.10225300Nov 21, 18:17:59
#390.0000000.0000000.00000029,036ms0.020444000.10225300Nov 21, 18:17:56

5.0V - Before Short Circuit

5.0VBefore Short CircuitOffline
40 Records
IDVoltage (V)Current (A)Resistance (Ω)Sample TimeScaling (a)Decay (k)Timestamp
#400.0000000.0000000.00000055,203ms0.000000000.00000000Nov 21, 18:07:36
#390.0000000.0000000.00000052,096ms0.000000000.00000000Nov 21, 18:07:31
#380.0000000.0000000.00000043,153ms0.000000000.00000000Nov 21, 18:07:27
#370.0000000.0000000.00000026,646ms0.000000000.00000000Nov 21, 18:07:09
#360.0000000.0000000.00000021,676ms0.000000000.00000000Nov 21, 18:07:02
#350.0000000.0000000.00000016,465ms0.000000000.00000000Nov 21, 18:06:58
#340.0000000.0000000.00000013,472ms0.000000000.00000000Nov 21, 18:06:52
#330.0000000.0000000.0000006,032ms0.000000000.00000000Nov 21, 18:06:50

5.0V - After Short Circuit

5.0VAfter Short CircuitOffline
55 Records
IDVoltage (V)Current (A)Resistance (Ω)Sample TimeScaling (a)Decay (k)Timestamp
#550.0000000.0000000.00000057,643ms0.014503000.02588100Nov 21, 18:31:47
#540.0000000.0000000.00000055,180ms0.042651000.02999500Nov 21, 18:31:45
#530.0000000.0000000.00000052,724ms0.000000000.05132400Nov 21, 18:31:42
#520.0000000.0000000.00000049,342ms0.041304000.05132400Nov 21, 18:31:39
#510.0000000.0000000.00000046,576ms0.039565000.05532900Nov 21, 18:31:36
#500.0000000.0000000.00000043,821ms0.000000000.00763400Nov 21, 18:31:33
#490.0000000.0000000.00000041,053ms0.008991000.00763400Nov 21, 18:31:30
#480.0000000.0000000.00000038,597ms0.008403000.00763400Nov 21, 18:31:28

10.0V - Before Short Circuit

10.0VBefore Short CircuitOffline
70 Records
IDVoltage (V)Current (A)Resistance (Ω)Sample TimeScaling (a)Decay (k)Timestamp
#700.0000000.0000000.00000057,114ms0.000000000.00000000Nov 21, 18:12:18
#690.0000000.0000000.00000054,654ms0.000000000.00000000Nov 21, 18:12:15
#680.0000000.0000000.00000051,583ms0.000000000.00000000Nov 21, 18:12:12
#670.0000000.0000000.00000049,131ms0.000000000.00000000Nov 21, 18:12:09
#660.0000000.0000000.00000045,139ms0.000000000.00000000Nov 21, 18:12:07
#650.0000000.0000000.00000042,691ms0.000000000.00000000Nov 21, 18:12:03
#640.0000000.0000000.00000040,228ms0.000000000.00000000Nov 21, 18:12:01
#630.0000000.0000000.00000037,461ms0.000000000.00000000Nov 21, 18:11:58

10.0V - After Short Circuit

10.0VAfter Short CircuitOffline
26 Records
IDVoltage (V)Current (A)Resistance (Ω)Sample TimeScaling (a)Decay (k)Timestamp
#260.0000000.0000000.00000058,209ms0.046540000.00664000Nov 21, 18:36:39
#250.0000000.0000000.00000055,434ms0.021878000.02997300Nov 21, 18:36:34
#240.0000000.0000000.00000045,306ms0.090199000.03545900Nov 21, 18:36:30
#230.0000000.0000000.00000037,993ms0.000000000.02064800Nov 21, 18:36:22
#220.0000000.0000000.00000032,755ms0.057528000.02064800Nov 21, 18:36:13
#210.0000000.0000000.00000028,028ms0.039947000.02064800Nov 21, 18:36:08
#200.0000000.0000000.00000023,584ms0.005274000.02064800Nov 21, 18:36:03
#190.0000000.0000000.00000017,791ms0.019534000.02064800Nov 21, 18:35:59

Electrical Parameters Analysis

System-Dependent Statistical Summary

2.5V Experiments
Min
0.000V
Avg
0.000V
Max
0.000V
5.0V Experiments
Min
0.000V
Avg
0.000V
Max
0.000V
10.0V Experiments
Min
0.000V
Avg
0.000V
Max
0.000V

Experimental Setup & Methodology

Configuration Parameters
  • Input Voltage Levels 2.5V, 5.0V, 10.0V
  • Sampling Rates 10ms, 50ms, 100ms
  • Experiment Phases Before & After Short Circuit
  • Reference Resistance R₀ = 50Ω
  • Database Cluster 6 separate databases
Measurement Methodology
Before Short Circuit:

Temperature-dependent Ohm's Law: R = R₀[1 + α(T-T₀)]

After Short Circuit:

System-dependent arc model: V = V₀·(1-β·V₀^γ)·exp(-λ·t·V₀^δ)

Where: V₀ = initial voltage, β,γ,λ,δ = system-dependent constants, t = time
Data Processing:

• Real-time computation of system-dependent scaling constants

• Continuous gap-free data collection

• Multi-database architecture for scalability

System Information

Database Cluster

Project: AIFaultGen

Databases: 6 separate DBs

Total Records: 283

Hardware

Controller: ESP32

Voltage Pins: Analog input

Current Sensing: Dedicated pins

Software

Backend: PHP 7.4+

Database: MySQL Cluster

Frontend: Bootstrap 5 + Chart.js

Database Cluster Status

Database Status Records Last Update Connection
2.5V - Before Short CircuitOnline46Nov 21, 17:53:02Idle
2.5V - After Short CircuitOnline46Nov 21, 18:18:25Idle
5.0V - Before Short CircuitOnline40Nov 21, 18:07:36Idle
5.0V - After Short CircuitOnline55Nov 21, 18:31:47Idle
10.0V - Before Short CircuitOnline70Nov 21, 18:12:18Idle
10.0V - After Short CircuitOnline26Nov 21, 18:36:39Idle

Last Updated: 2025-11-22 05:24:19 | AIFaultGen - AI-Powered Electrical Fault Open Data Generator | Auto-refresh: 30 seconds

Advanced monitoring of electrical behavior under fault conditions powered by physics-informed generative AI
Physics Principle: Short circuit fault quantities are fundamentally dependent on initial system power conditions. Higher input voltages lead to higher short circuit currents and lower short circuit voltages due to increased energy dissipation.
Research Team: OpenFaultDynamics - Meru University of Science and Technology, Kenya